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Phenomena Theory of the Amorphous 
Linear Entangled Polymers 
YU. K. KOKORIN and V. N. POKROVSKll 
Research Institute, Altay, BBBsk-city, Russia 

(Received June 26, 1992) 

Approach based on polymer chain dynamics in the “tube” is highlighted and its weaknesses presented. 
A new approach is proposed and its results discussed. 

KEY WORDS Relaxation phenomena, chain entanglements, chain dynamics. 

Both theoretical and experimental investigations of the undilute solutions and 
entangled polymer melts present substantial difficulties. As for the theory, the 
greatest success has been achieved within the scope of the uni-molecular approach. 

The approach based on the polymer chain dynamics in the ‘ ‘ t ~ b e ” ~ ~ ~  will be 
highlighted below. However, subsequent investigations have shown that the “tube” 
model fails to explain the whole set of the experimental  factor^,^-'^ including the 
superslow relaxation processes, that play an important role in  many phenomena. 

The results obtained on the basis of an essentially different and alternative 
approach3~l3 are presented below. 

THE MACROMOLECULE DYNAMICS EQUATION 

The Gaussian subchains model is used to describe the dynamics of the long mac- 
romolecules at the system slow motion. The surroundings of the macromolecule is 
regarded as a continuous viscoelastic medium whose influence on the polymer 
chain movement has a relaxational (retarding) character. Assuming linear approx- 
imation at the medium velocity gradient, the polymer chain motion equation in 
the normal coordinates py(t) is written as 

m ijp( l )  = - 1: P ~ ( S > [ K  - vt,PPlr-s - 1: qa(s)[bP - WqP71r-s  

a , P =  0 , 1 ,  . . . ,  N ;  i , j = l , 2 , 3  

223 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
1
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



224 YU. K .  KOKORIN AND V. N.  POKROVSKII 

Here m is subchain (Brownian particle) mass, vjj = dvj /dxj  = unperturbed me- 
dium velocity gradients tensor, wjj  = (vij - vji)/2.  

The first term on the right in Equation (1) describes the drag force of or-th bead 
when it moves relative to the medium and other chain particles. The eigenvalues 
po(s) of the external friction kernel are chosen in a form of the pure viscous and 
viscoelastic or aftereffecting terms: 

5B - 
pa($) = p(s) = 256(s) + - exp( - s / T ) ,  (a = 0, N )  

7 

where B is the factor of the subchain friction coefficient 5 increasing because of 
entanglements. The postulated relaxation time T agrees, as has been ~ h o w n , ~  with 
the calculated macroscopic relaxation time T ’  = q/GL, where q = viscosity and 
G: = plateau shear modulus. 

The second term on the right in Equation (1) represents the forces of the “in- 
ternal” viscosity. However, in a customary understanding, the internal viscosity 
forces are caused by the potential barrier of the internal rotation. For undilute 
systems, they are negligible in comparison with the forces affecting the deformation 
of the entangled macromolecule. Accordingly, the eigenvalues of the “internal” 
friction kernel is selected in a form: 

where the component taking into account the proper internal viscosity (unconnected 
with the entanglements), is neglected: E is coefficient of the internal viscosity 
increasing due to the entanglements. 

As the zero mode describes translational motion of the chain as a whole when 
it doesn’t undergo deformationss-the eigenvalue ‘po = 0. While generally speaking 
the parameters B and E depend on the mode number a, here these parameters 
are taken as constant. As can be shown, taking into account these parameters’ 
dependence on OL only leads to working out the molecule dynamics in detail without 
really changing its essential features. 

Integration of Equation (1) for all times s preceding the present time t takes 
account of the whole macromolecule history in the system. 

The third term on the right of Equation (1) represents the elastic pairwise in- 
teraction of the neighboring chain particles. The elastic constant is written in a 
form ~ T F ,  where T is the system temperature, and F = 3N/2R2.  For the case in 
question of an ideal chain, the mean square end-to-end distance R Z  = Nb2. The 
eigenvalues of the elastic pairwise interaction matrix X, = 4 x sin2[ad2(N + l)]. 

Finally, the last term on the right in Equation (1) expresses the random Brownian 
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AMORPHOUS ENTANGLED POLYMERS 225 

force distributed according to the Gaussian law with the mean equal zero and the 
correlation function 

B + E  
K:P(s) = T(6,,6,, 

7 

R,, = the orthogonal matrix of the transformation to the normal coordinates. 
Thus, in the approximation under consideration the macromolecule dynamics is 

defined by the Rouse longest relaxation time T*  = T? = a ' ~ ;  - CoM2 and the 
quantities B, E and x = /2B7*, are universal functions of the parameter Z - C1M0.5, 
where C = concentration and M = polymer molecular weight13.14: 

The polymer chemical nature is incorporated into the theory through the friction 
coefficient 5. 

DIFFUSION OF THE CENTER OF MASS OF THE MACROMOLECULE 
AND SUBCHAIN 

The r.m.s. center of mass displacement (q2) and a-th subchain (X:) in the polymer 
liquid at rest, ~ a l c u l a t e d ' ~ ~ ' ~  on the basis of the dynamics Equation (1)  including 
the postulates (2) and (3) are 

Here, T; = two sets of the relaxation times arising when macromolecule intro- 
ducing in the viscoelastic liquid, P,' = corresponding weights. 

The dependences (4) and (9, investigated in detail in References 14 and 15, are 
shown in Figure 1. The characteristic times in the f-units and the scales in the X2 
units are shown at the axis. Here only the most significant results should be high- 
lighted. 

1) Relaxation spectrum (6) contains the Rouse relaxation times T ! .  Actually, 
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" -  
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-b 21-2'1 %*'It  2 IT: 
E B  

FIGURE 1 N = 50, E = l W ,  B = lo2, x = lo-'. 

the limit transition to the viscous medium case without memory and entanglements 
( T ,  B ,  E + 0) results in the Rouse spectrum T,R = {/4T&. Equations (4) and (5) 
are in  this case transformed into the corresponding results for the Rouse model (a 
single macromolecule in the viscous fluid without entanglements), marked in Figure 
1 and in the text with the index R. 

2) For the other limiting case (many entanglements, B ,  E >> l), the superslow 
relaxation times ~ , f  > T appear in the system. The longest one of these, the time 
T: (-C4.8M4 4), corresponds to the rearrangement (relaxation) in the polymer 
chain (stresses) segments which size is in the order of a macromolecule mean size 
R. From this follows that T: is the stress relaxation time in the system as a whole- 
on the scales equal to the total polymer sample sizes; this time is the longest one 
of the relaxation times in the system. The superslow relaxation processes mechanism 
is defined at the microscopic level. 

3) The dynamics Equation (1) results in the inherent length 

- c -1MO 6 TT 
= { ( N  + 1) (B  + 1 )  

in the system occurrence (plateau in the curve q2(r) in Figure 1). Its physical 
significance is the mean distance between entanglements. 

4) The postulated relaxation time T ( - - C ~ . * M ~ . ~ )  corresponds to the relaxation 
of the macromolecule parts on the scale 5. 

5) One physical meaning of the theory parameter x is the value reciprocal to 
the entanglements number per macromolecule N,: x = n2/2N,. Another interpre- 
tation of x is a mean macromolecule size t o  mean entanglement distance ratio: >i' 
= 5 2 ~ 2 / 2 R 2 .  
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AMORPHOUS ENTANGLED POLYMERS 227 

6) The relation with the viscoelasticity is established: 

1 R 2  
G’ = -nT,, 

= 6  5 

where n is the number of macromolecules per unit volume. 
7) The mobility anisotropy for the polymer chain is established14 from the dy- 

namics Equation (1). The dynamics model (1)-(3) also leads to14 the fluctuations 
of the “tube” length and diameter, and macromolecule “leakage” through “tube 
walls,” effects that are artificially introduced into the “tube” approach. 

8) Contrary to Doi and Edwards’ conclusion2 it is shown that the macromolecule 
ends do not play an essential role in the dense system. 

In addition it should be noted that sigmoidal curves similar to the ones in Figure 
1 were obtained16-20 through simulation of the molecule dynamics. 

QUASI-ELASTIC LIGHT AND NEUTRON SCATTERING 

Calculated on the basis of results (4)- (6) the incoherent scattering functions from 
one macromolecule 

are shown in Figure 2. Here q = (4dA)sin W2) is the wave vector; A = the incident 
radiation wave length, 8 = the scattering angle. All the characteristic features of 
the X : ( t )  relaxation behavior, discussed above, have an effect on the scattering 
processes. 

FIGURE 2 N = 102, E = 103, B = 102, x = 10-2, - - - - - Rouse model 
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228 YU. K .  KOKORIN AND V. N. POKROVSKII 

Like in the diffusion case there are three observed time ranges of essentially 
different behavior: 

t t 
O < t < -  

E - a ( N  + 1) - 
T* 

1/2 
BX 7 

sin(q, t )  = exp -a2n (1 + + E )  = k, < t < 7 I 
1 t  

B +  1 ~ *  
1 -a-- 

where a = q2R2/6n2. At the large and small times Sin(q, t) decreases at two different 
exponential rates (nowadays there are indirect evidences confirming this fact for 
the real polymers). The plateau 5, which has a length equal to T ,  as in Figure 1 (E 
>> B >> l), is observed in the intermediate range. This plateau's presence is here 
marked apparently for the first time. 

The incoherent scattering intensity from one macromolecule at the frequency o 
in interval o + dw is proportional to dynamic form-factor 

&(q, o) = J Si,(q, t)e"*' dt 
27l -=  

2 

-2 

I I 1 I I 1 

- 4  0 4 t.p* 

2 -  

-2 - 

- 4  0 4 p.,* 
FIGURE 3 N = 103, E = 103, B = 102, x = 1 0 - 2  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
1
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



AMORPHOUS ENTANGLED POLYMERS 229 

- 4  0 

FIGURE 4 N = lo3, E = lo', B = 10'. x = lo - '  

The experimentally measured quantity is the peak half-width Awq for dependence 
Zin(q, w) = Sin(q, w)/Sin(q, 0) at fixed q, which is obtained in the following form 

Awq = - q2R2 ( B  + 1) = A w J B  + 1) - C4.8M1.4 
UT ' 7  * 

where Aw, is the half-width for the Rouse model. Thus, at the transition from a 
dilute to undilute solution, the half-width increases by B times. The macromolecule 
mobility decreases B times when this transition occurs. 

THE OPTICAL ANISOTROPY 

At the oscillatory shear flow y(t,  w) - e-i"t  , the complex birefringence An is related 
to the velocity gradient y by the relation 

A.n(t, w) = n , ( t ,  w) - n2( t ,  w) = S(w)y( t ,  w) 

that determines the mechano-optic coefficient 

S(w) = S'(w) + iS"(w) = SM(w)ei93(4 
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I 
I 

I 

Ht 

- 4  

- a  

-4 

FIGURE 5 - - - = experimental data.s 

The phase angle, O,, specifies the phasing An with respect to y; S,,, = (S12 + S'*)lI2 
is the modulus of the mechano-optic coefficient. 

The calculations on the dynamics Equation (1) result in the expression21: 

The coefficient Q - C'M' and is independent of chain subdivision. Relaxation 
time 7: = 27:7;/(7: - 7 ; )  = 27;. Quantities P with indices are the weights by 
means of which every relaxation time contributes to the S' and S"; they are de- 
pendent only on 7% and 79. 

The dependences (7) are represented in Figure 3. Characteristically, there are 
three sets of relaxation times, plateau occurrence and extrema at intermediate 
frequencies. These particularities reflect on the SM and 0 ,  behavior (Figure 4). 

The obtained results provide for the first time explanation2' of the experimental 
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I 1 I I I 

- 4  0 4 t 4 j L o v  

FIGURE 6 N = lo.’, E = lo.’, B = lo2, x = lo-*. 

data’ for narrow fractions of poly-a-methylstyrene solutions represented in Figure 
5 and .Table I, where C* is critical concentration for the coils overlapping, [q] is 
intrinsic viscosity. Above-mentioned particularities are very prominent for the sys- 
tem 3 (undilute solution) and even for the system 2 (semi-dilute solution). 

LINEAR VISCOELASTICITY 

 calculation^^*'^^'^ using the dynamics Equation (1) led to the following expressions 
for the elastic modulus G‘ and loss modulus G 

G’(o)  = 

(8) 
G ( o )  = 
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tg G”, Pa 

8 

6 

4 

-2 0 2 
FIGURE 7 o = experimental data,I2 N = 102. 

represented in Figure 6. Here the quantities A with indices are the weights, de- 
pending, as above, on T: and 7:; T:* = ~ T T ~ / ( T  + 27,’) are two new sets of 
relaxation times exhibited in this phenomenon. It is easy to check that i) T:- = 
27, and ii) the set of the relaxation times T:+ are reduced, in fact, to a single 
time: T:+ = T .  

As Figure 6 shows, the superslow relaxation times are exhibited at  the lowest 
frequencies as a “shoulder” on the dependence G‘(o).  At the same time the loss 
modulus is less sensitive to the superslow relaxation processes. These two obser- 
vations are corroborated by experimental data12 represented in Figure 7 and in 
Table I1 (where Me = molecular weight between the entanglements, p = polymer 
density), and also by other  result^.^ Tables I and I1 show that T:  exceeds T by one 
to two or more orders. 

Separating the viscosity coefficient q and the elasticity coefficient v from the 
expansion p ( w )  = -iqo + vo2 at low frequencies gives the following results3: 

Similarly, at high frequencies the plateau modulus value is found3: 
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AMORPHOUS ENTANGLED POLYMERS 235 

The dependences (9) and (10) are typical for the real polymers. They also produce 
useful relation: u = 72G: = ~ q .  

For the intrinsic quantities (in the case of the dilute blends of two narrow fractions 
of one and the same polymer) 

where zero index refers to the matrix properties, the following relations are.obtained” 

[q] - M ’ M , ’ ,  [u ]  - M’M,’ 

By contrast, the “tube” model givesz3 [q] - M 3 M i 3 .  According to the experimental 
data for the p~ lybu tad ienes~~  

[4 - M0.5M -0.8 [,,I - M1.3-3.OM - (1 .8+2.2)  
0 7  0 

and for the  polystyrene^^^ [q] - M0.6-0.7M 0 - (0.3+0.4).  

- iq”(w) is calculated 
On the basis of the results (8) the dynamic viscosity q(w) = - G(w)/iw = q’(w) 
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These dependences are shown in Figure 8, representing the relaxation properties 
of the dynamic modulus in a full measure. 

CONCLUSION 

The observable characteristic features of the undilute linear polymers’ relaxation 
behavior can be understood on the basis of the current approach without using 
such conceptions as the labile knots network or “tube.” 

The environment properties in the “tube” model are represented by a single 
parameter-the “tube” diameter, which itself provides no information on the 
medium dynamic properties. This is from our point of view the main disadvantage 
of de Gennes, Doi and Edwards, of the approach with whose theory it is impossible 
to describe the complex hierarchical relaxation behavior observable for the ine- 
quilibrium phenomena. 

Note also that the majority of the features postulated in the “tube” model, are 
consequences of the dynamics model (1) - (3). 

There is a simpler, but as is easily seen, deficient variant26 of the present ap- 
proach. 
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